MATH4060 Tutorial 5

23 February 2023

Problem 1 (Chap 6, Ex 2). Prove that

$$
\prod_{n=1}^{\infty} \frac{n(n+a+b)}{(n+a)(n+b)}=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+1)}
$$

whenever a and b are positive. Using the product formula for $\sin \pi s$, give another proof that $\Gamma(s) \Gamma(1-s)=\pi / \sin \pi s$.

We take the product representation of $\Gamma(s)$ as definition: for $a, b \neq-1,-2, \ldots$,

$$
\begin{aligned}
\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+1)} & =\frac{a+b+1}{(a+1)(b+1)} e^{-\gamma} \prod_{n=1}^{\infty} \frac{n(n+a+b+1)}{(n+a+1)(n+b+1)} e^{1 / n} \\
& =\frac{a+b+1}{(a+1)(b+1)} \prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right) e^{-1 / n} \prod_{n=1}^{\infty} \frac{n(n+a+b+1)}{(n+a+1)(n+b+1)} e^{1 / n} \\
& =\frac{a+b+1}{(a+1)(b+1)} \prod_{n=1}^{\infty} \frac{(n+1)(n+a+b+1)}{(n+a+1)(n+b+1)} \\
& =\prod_{n=1}^{\infty} \frac{n(n+a+b)}{(n+a)(n+b)}
\end{aligned}
$$

where we have used the identity $e^{-\gamma}=\prod_{n=1}^{\infty}(1+1 / n) e^{-1 / n}$ as in the proof of Theorem 1.7. Now, to prove the reflection formula, we first derive the functional equation. For $s \neq 0,-1,-2, \ldots$, take $a=s-1$ and $b=1$ in the infinite product:

$$
\frac{\Gamma(s) \Gamma(2)}{\Gamma(s+1)}=\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \frac{n(n+s)}{(n+s-1)(n+1)}=\lim _{N \rightarrow \infty} \frac{1}{s} \frac{N+s}{N+1}=\frac{1}{s}
$$

So we have $\Gamma(s+1)=s \Gamma(s) \Gamma(2)=s \Gamma(s)$ provided that $\Gamma(2)=1$. This follows from the same identity, using $\Gamma(1)=1$ and that $s \Gamma(s) \rightarrow 1$ as $s \rightarrow 0$. Then for the reflection formula, we take $a=s$ and $b=-s$:

$$
\begin{aligned}
\Gamma(s) \Gamma(1-s) & =s^{-1} \Gamma(s+1) \Gamma(-s+1)=s^{-1} \prod_{n=1}^{\infty} \frac{n^{2}}{(n+s)(n-s)} \\
& =s^{-1} \prod_{n=1}^{\infty}\left(1-\frac{s^{2}}{n^{2}}\right)^{-1}=\frac{\pi}{\sin \pi s}
\end{aligned}
$$

as required.

Problem 2 (Chap 6, Ex 4). Prove that if $f(z)=\frac{1}{(1-z)^{\alpha}}$ for $|z|<1$, where $\alpha \in \mathbb{C}$ is fixed, then $f(z)=\sum_{n=0}^{\infty} a_{n}(\alpha) z^{n}$ with

$$
a_{n}(\alpha) \sim \frac{1}{\Gamma(\alpha)} n^{\alpha-1} \quad \text { as } n \rightarrow \infty
$$

It suffices to show that $\lim _{n} a_{n}(\alpha) / n^{\alpha-1}=1 / \Gamma(\alpha)$. Without loss of generality, $\alpha \neq$ $0,-1,-2, \ldots$ By writing $f(z)=e^{-\alpha \log (1-z)}$ and noting that $f^{(n)}(z)=\alpha(\alpha+1) \cdots(\alpha+$ $n-1) /(1-z)^{\alpha+n}$, we have

$$
a_{n}(\alpha)=\frac{f^{(n)}(0)}{n!}=\frac{\alpha(\alpha+1) \cdots(\alpha+n-1)}{n!}
$$

So

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}(\alpha)}{n^{\alpha-1}} & =\frac{1}{\alpha-1} \lim _{n \rightarrow \infty} \frac{(\alpha-1)((\alpha-1)+1) \cdots((\alpha-1)+n)}{n^{\alpha-1} n!} \\
& =\frac{1}{(\alpha-1) \Gamma(\alpha-1)}=\frac{1}{\Gamma(\alpha)}
\end{aligned}
$$

where we have used the representation of gamma function in Chap 6 Ex 1.

Problem 3 (Chap 6, Ex 15). Prove that for $\operatorname{Re}(s)>1$,

$$
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x
$$

Note that the integral is absolutely integrable: near zero because $e^{x}-1>x$ and $\operatorname{Re}(s)>1$; and near infinity because of exponential decay. For $x>0$, write $1 /\left(e^{x}-1\right)=$ $e^{-x} /\left(1-e^{-x}\right)=\sum_{n=1}^{\infty} e^{-n x}$ so that

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x & =\int_{0}^{\infty} \sum_{n=1}^{\infty} e^{-n x} x^{s-1} d x=\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-n x} x^{s-1} d x \\
& =\sum_{n=1}^{\infty} \int_{0}^{\infty} n^{-s} e^{-x} x^{s-1} d x=\zeta(s) \Gamma(s)
\end{aligned}
$$

Here, the use of Fubini's theorem to interchange sum and integral is justified due to the absolute integrability and that $e^{-n x}>0$ for all n; and we have used a change of variable $x \mapsto x / n$ for each term of the series.

Problem 4 (cf. Chap 6, Prob 1, 2). Show that $|\zeta(1+i t)|=O(\log |t|)$ as $|t| \rightarrow \infty$.
We first prove the following representation of $\zeta(s)$ on $\operatorname{Re}(s)>0$: for every integer $N \geq 1$, we have

$$
\zeta(s)=\sum_{n=1}^{N} n^{-s}-\frac{N^{1-s}}{1-s}-s \int_{N}^{\infty} \frac{\{x\}}{x^{s+1}} d x
$$

where $\{x\}$ denotes the fractional part of x. The idea is to first show that the identity holds for $\operatorname{Re}(s)>1$, and then observe that the RHS defines a holomorphic function on $\operatorname{Re}(s)>0$. For $\operatorname{Re}(s)>1$, we write

$$
\begin{aligned}
\int_{n}^{n+1} \frac{\{x\}}{x^{s+1}} d x & =\int_{n}^{n+1} \frac{x}{x^{s+1}} d x-\int_{n}^{n+1} \frac{n}{x^{s+1}} d x \\
& =\frac{1}{1-s}\left[(n+1)^{1-s}-n^{1-s}\right]+\frac{n}{s}\left[(n+1)^{-s}-n^{-s}\right] \\
& =\left(\frac{1}{1-s}+\frac{1}{s}\right)\left[(n+1)^{1-s}-n^{1-s}\right]-\frac{1}{s}(n+1)^{-s} \\
& =\frac{1}{s(1-s)}\left[(n+1)^{1-s}-n^{1-s}\right]-\frac{1}{s}(n+1)^{-s}
\end{aligned}
$$

Summing from $n=N$ gives

$$
\int_{N}^{\infty} \frac{\{x\}}{x^{s+1}} d x=-\frac{N^{1-s}}{s(1-s)}-\frac{1}{s} \sum_{n=N+1}^{\infty} n^{-s}
$$

because $\operatorname{Re}(s)>1$ (so that both integral and telescoping series converge). Then

$$
\zeta(s)=\sum_{n=1}^{N} n^{-s}+\sum_{n=N+1}^{\infty} n^{-s}=\sum_{n=1}^{N} n^{-s}-\frac{N^{1-s}}{1-s}-s \int_{N}^{\infty} \frac{\{x\}}{x^{s+1}} d x
$$

Using an argument similar to Proposition 2.5 and Corollary 2.6, observe that the integral $^{1} \int_{N}^{\infty}\{x\} x^{-s-1} d x$ (viewed as an infinite sum as above) is uniformly convergent on any half-plane $\operatorname{Re}(s) \geq \epsilon, \epsilon>0$. So the RHS gives an analytic continuation of $\zeta(s)$ to $\operatorname{Re}(s)>0$. This proves the desired representation.

Next, for $s=\sigma+i t$ with $\sigma>0$ and $t \neq 0$, we have $|1-s| \geq|t|$ and

$$
|\zeta(s)| \leq \sum_{n=1}^{N} n^{-\sigma}+\frac{N^{1-\sigma}}{|t|}+\frac{|s| N^{-\sigma}}{\sigma}
$$

Putting $\sigma=1$ and $N=[|t|]$ with $|t| \geq 1$, we have $|s| \leq 2|t|$ and $N \leq|t|<N+1$. Therefore

$$
|\zeta(s)| \leq \sum_{n=1}^{N} \frac{1}{n}+1+\frac{2(N+1)}{N}=O(\log |t|)
$$

as $|t| \rightarrow \infty$, because $\sum_{n=1}^{N} n^{-1}=O(\log N)$, while the last two terms are bounded independent of $|t| \geq 1$.

Remarks: (a) We also have $\left|\zeta^{\prime}(s)\right|=O\left(\log ^{2}|t|\right)$ as $|t| \rightarrow \infty$, which can be proved using Cauchy integral formula ${ }^{2}$, similar to Proposition 2.7, but using the above representation of $\zeta(s)$ instead. (b) For $s=1+i t, t \neq 0$ fixed, we have

$$
\sum_{n=1}^{N} \frac{1}{n^{1+i t}}=\zeta(s)-\frac{N^{-i t}}{i t}+s \int_{N}^{\infty} \frac{\{x\}}{x^{s+1}} d x
$$

Observe that $\left|N^{-i t}\right|=1$ and the last term is bounded by $|s| / N$ which tends to 0 as $N \rightarrow \infty$. So partial sums of $\sum 1 / n^{1+i t}$ are bounded, but series does not converge because $N^{-i t}=e^{-i t \log N}$ does not. This shows that the series definition of $\zeta(s)$ cannot be extended to any point on $\operatorname{Re}(s)=1$.

[^0]
[^0]: ${ }^{1}$ i.e. write $\int_{n}^{n+1}\{x\} x^{-s-1}=\int_{n}^{n+1}\left(x^{-s}-n^{-s}\right) d x-n \int_{n}^{n+1}\left(x^{-s-1}-n^{-s-1}\right) d x$, then apply meanvalue theorem as in the proposition/corollary.
 ${ }^{2}$ For an explicit proof, see Theorem 5.3 in https://faculty.math.illinois.edu/~hildebr/ant/ main.pdf.

